Daniela M Santos, Lorena Pantano, Gina Pronzati, Paula Grasberger, Clemens K Probst, Katharine E Black, Jillian J Spinney, Lida P Hariri, Royale Nichols, Yufei Lin, Michael Bieler, Peter Seither, Paul Nicklin, David Wyatt, Andrew M Tager, and Benjamin D Medoff. 2020. “Screening for YAP Inhibitors Identifies Statins as Modulators of Fibrosis.” Am J Respir Cell Mol Biol, 62, 4, Pp. 479-492.Abstract
Idiopathic pulmonary fibrosis is a lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. In this study, we developed a high-throughput small-molecule screen for YAP inhibitors in primary human lung fibroblasts. Multiple HMG-CoA (hydroxymethylglutaryl-coenzyme A) reductase inhibitors (statins) were found to inhibit YAP nuclear localization via induction of YAP phosphorylation, cytoplasmic retention, and degradation. We further show that the mevalonate pathway regulates YAP activation, and that simvastatin treatment reduces fibrosis markers in activated human lung fibroblasts and in the bleomycin mouse model of pulmonary fibrosis. Finally, we show that simvastatin modulates YAP in mouse lung fibroblasts. Our results highlight the potential of small-molecule screens for YAP inhibitors and provide a mechanism for the antifibrotic activity of statins in idiopathic pulmonary fibrosis.
Sudhir Gopal Tattikota, Bumsik Cho, Yifang Liu, Yanhui Hu, Victor Barrera, Michael J Steinbaugh, Sang-Ho Yoon, Aram Comjean, Fangge Li, Franz Dervis, Ruei-Jiun Hung, Jin-Wu Nam, Shannan Ho Sui, Jiwon Shim, and Norbert Perrimon. 2020. “A single-cell survey of blood.” Elife, 9.Abstract
blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand and receptor , respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.
Sarah Alsamman, Stephanie A Christenson, Amy Yu, Nadia ME Ayad, Meghan S Mooring, Joe M Segal, Jimmy Kuang-Hsien Hu, Johanna R Schaub, Steve S Ho, Vikram Rao, Megan M Marlow, Scott M Turner, Mai Sedki, Lorena Pantano, Sarani Ghoshal, Diego Dos Santos Ferreira, Hsiao-Yen Ma, Caroline C Duwaerts, Regina Espanol-Suner, Lan Wei, Benjamin Newcomb, Izolda Mileva, Daniel Canals, Yusuf A Hannun, Raymond T Chung, Aras N Mattis, Bryan C Fuchs, Andrew M Tager, Dean Yimlamai, Valerie M Weaver, Alan C Mullen, Dean Sheppard, and Jennifer Y Chen. 2020. “Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice.” Sci Transl Med, 12, 557.Abstract
Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target. We showed that tricyclic antidepressants (TCAs) reduce hepatic fibrosis by inhibiting aCDase and increasing the bioactive sphingolipid ceramide. We now demonstrate that targeting aCDase inhibits YAP/TAZ activity by potentiating its phosphorylation-mediated proteasomal degradation via the ubiquitin ligase adaptor protein β-TrCP. In mouse models of fibrosis, pharmacologic inhibition of aCDase or genetic knockout of aCDase in HSCs reduces fibrosis, stromal stiffness, and YAP/TAZ activity. In patients with advanced fibrosis, aCDase expression in HSCs is increased. Consistently, a signature of the genes most down-regulated by ceramide identifies patients with advanced fibrosis who could benefit from aCDase targeting. The findings implicate ceramide as a critical regulator of YAP/TAZ signaling and HSC activation and highlight aCDase as a therapeutic target for the treatment of fibrosis.
Lauren A Henderson, Kacie J Hoyt, Pui Y Lee, Deepak A Rao, Helena A Jonsson, Jennifer P Nguyen, Kayleigh Rutherford, Amélie M Julé, Louis-Marie Charbonnier, Siobhan Case, Margaret H Chang, Ezra M Cohen, Fatma Dedeoglu, Robert C Fuhlbrigge, Olha Halyabar, Melissa M Hazen, Erin Janssen, Susan Kim, Jeffrey Lo, Mindy S Lo, Esra Meidan, Mary Beth F Son, Robert P Sundel, Matthew L Stoll, Chad Nusbaum, James A Lederer, Talal A Chatila, and Peter A Nigrovic. 2020. “Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis.” JCI Insight, 5, 6.Abstract
Systemic juvenile idiopathic arthritis (sJIA) begins with fever, rash, and high-grade systemic inflammation but commonly progresses to a persistent afebrile arthritis. The basis for this transition is unknown. To evaluate a role for lymphocyte polarization, we characterized T cells from patients with acute and chronic sJIA using flow cytometry, mass cytometry, and RNA sequencing. Acute and chronic sJIA each featured an expanded population of activated Tregs uncommon in healthy controls or in children with nonsystemic JIA. In acute sJIA, Tregs expressed IL-17A and a gene expression signature reflecting Th17 polarization. In chronic sJIA, the Th17 transcriptional signature was identified in T effector cells (Teffs), although expression of IL-17A at the protein level remained rare. Th17 polarization was abrogated in patients responding to IL-1 blockade. These findings identify evolving Th17 polarization in sJIA that begins in Tregs and progresses to Teffs, likely reflecting the impact of the cytokine milieu and consistent with a biphasic model of disease pathogenesis. The results support T cells as a potential treatment target in sJIA.
Connie WY Ha, Anthony Martin, Gregory D Sepich-Poore, Baochen Shi, Yizhou Wang, Kenneth Gouin, Gregory Humphrey, Karenina Sanders, Yasiru Ratnayake, Kelvin SL Chan, Gustaf Hendrick, JR Caldera, Christian Arias, Jacob E Moskowitz, Shannan J Ho Sui, Shaohong Yang, David Underhill, Matthew J Brady, Simon Knott, Kelly Kaihara, Michael J Steinbaugh, Huiying Li, Dermot PB McGovern, Rob Knight, Phillip Fleshner, and Suzanne Devkota. 2020. “Translocation of Viable Gut Microbiota to Mesenteric Adipose Drives Formation of Creeping Fat in Humans.” Cell, 183, 3, Pp. 666-683.e17.Abstract
A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.
Sining Leng, Emanuele Pignatti, Radhika S Khetani, Manasvi S Shah, Simiao Xu, Ji Miao, Makoto M Taketo, Felix Beuschlein, Paula Q Barrett, Diana L Carlone, and David T Breault. 2020. “β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis.” Nat Commun, 11, 1, Pp. 1680.Abstract
Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of β-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas β-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in β-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function.
Joseph R Klim, Luis A Williams, Francesco Limone, Irune Guerra San Juan, Brandi N Davis-Dusenbery, Daniel A Mordes, Aaron Burberry, Michael J Steinbaugh, Kanchana K Gamage, Rory Kirchner, Rob Moccia, Seth H Cassel, Kuchuan Chen, Brian J Wainger, Clifford J Woolf, and Kevin Eggan. 2019. “ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair.” Nat Neurosci, 22, 2, Pp. 167-179.Abstract
The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.
Peter Krusche, Len Trigg, Paul C Boutros, Christopher E Mason, Francisco M De La Vega, Benjamin L Moore, Mar Gonzalez-Porta, Michael A Eberle, Zivana Tezak, Samir Lababidi, Rebecca Truty, George Asimenos, Birgit Funke, Mark Fleharty, Brad A Chapman, Marc Salit, and Justin M Zook. 2019. “Best practices for benchmarking germline small-variant calls in human genomes.” Nat Biotechnol, 37, 5, Pp. 555-560.Abstract
Standardized benchmarking approaches are required to assess the accuracy of variants called from sequence data. Although variant-calling tools and the metrics used to assess their performance continue to improve, important challenges remain. Here, as part of the Global Alliance for Genomics and Health (GA4GH), we present a benchmarking framework for variant calling. We provide guidance on how to match variant calls with different representations, define standard performance metrics, and stratify performance by variant type and genome context. We describe limitations of high-confidence calls and regions that can be used as truth sets (for example, single-nucleotide variant concordance of two methods is 99.7% inside versus 76.5% outside high-confidence regions). Our web-based app enables comparison of variant calls against truth sets to obtain a standardized performance report. Our approach has been piloted in the PrecisionFDA variant-calling challenges to identify the best-in-class variant-calling methods within high-confidence regions. Finally, we recommend a set of best practices for using our tools and evaluating the results.
Nicco Krezdorn, Christine G Lian, Michael Wells, Luccie Wo, Sotirios Tasigiorgos, Shuyun Xu, Thiago J Borges, Rayven M Frierson, Ewelina Stanek, Leonardo V Riella, Bohdan Pomahac, and George F Murphy. 2019. “Chronic rejection of human face allografts.” Am J Transplant, 19, 4, Pp. 1168-1177.Abstract
Face vascularized composite allografts (FVCAs) have helped patients with severe facial disfigurement, with acute rejection now largely controlled through iatrogenic immunosuppression. However, little is known regarding the incidence and mechanism(s) of more long-term pathologic alterations in FVCAs that may affect function and graft durability. Protocol surveillance biopsy specimens for up to an 8-year interval in 7 patients who received FVCAs at our institution revealed histopathologic evidence of chronic rejection. Clinical manifestations included features of premature aging, mottled leukoderma accentuating suture lines, telangiectasia, and dryness of nasal mucosa. Pathologic changes consisted of epidermal thinning accompanied by discrete foci of lymphocyte-mediated cytotoxicity, hyperkeratosis, follicular plugging, vascular ectasia, and sclerosis beneath the epidermal layer associated with collagen type I deposition. Genomic interrogation and immunohistochemistry of sclerotic zones revealed upregulation of the AP-1 pathway components, JunB and c-Fos, previously implicated in overproduction of type I dermal collagen in the setting of systemic sclerosis. We conclude that some patients develop chronic rejection in FVCAs with striking similarities to alterations seen in certain autoimmune cutaneous disorders (lupus erythematosus and scleroderma/chronic sclerodermoid graft-versus-host disease). Identification of relevant pathways and genes, such as JunB and c-Fos, may provide new targets for preventative therapies for chronic immune-mediated changes in vascularized composite allografts.
Aaron Goldman, Joshua L Smalley, Meeta Mistry, Harald Krenzlin, Hong Zhang, Andrew Dhawan, Barbara Caldarone, Stephen J Moss, David A Silbersweig, Sean E Lawler, and Ilana M Braun. 2019. “A computationally inspired in-vivo approach identifies a link between amygdalar transcriptional heterogeneity, socialization and anxiety.” Transl Psychiatry, 9, 1, Pp. 336.Abstract
Pharmaceutical breakthroughs for anxiety have been lackluster in the last half-century. Converging behavior and limbic molecular heterogeneity has the potential to revolutionize biomarker-driven interventions. However, current in vivo models too often deploy artificial systems including directed evolution, mutations and fear induction, which poorly mirror clinical manifestations. Here, we explore transcriptional heterogeneity of the amygdala in isogenic mice using an unbiased multi-dimensional computational approach that segregates intra-cohort reactions to moderate situational adversity and intersects it with high content molecular profiling. We show that while the computational approach stratifies known features of clinical anxiety including nitric oxide, opioid and corticotropin signaling, previously unrecognized druggable biomarkers emerge, such as calpain11 and scand1. Through ingenuity pathway analyses, we further describe a role for neurosteroid estradiol signaling, heat shock proteins, ubiquitin ligases and lipid metabolism. In addition, we report a remarkable behavioral pattern that maps to molecular features of anxiety in mice through counterphobic social attitudes, which manifest as increased, yet spatially distant socialization. These findings provide an unbiased approach for interrogating anxiolytics, and hint toward biomarkers underpinning behavioral and social patterns that merit further exploration.
Yang Zheng, Pin Liu, Ling Bai, James S Trimmer, Bruce P Bean, and David D Ginty. 2019. “Deep Sequencing of Somatosensory Neurons Reveals Molecular Determinants of Intrinsic Physiological Properties.” Neuron, 103, 4, Pp. 598-616.e7.Abstract
Dorsal root ganglion (DRG) sensory neuron subtypes defined by their in vivo properties display distinct intrinsic electrical properties. We used bulk RNA sequencing of genetically labeled neurons and electrophysiological analyses to define ion channel contributions to the intrinsic electrical properties of DRG neuron subtypes. The transcriptome profiles of eight DRG neuron subtypes revealed differentially expressed and functionally relevant genes, including voltage-gated ion channels. Guided by these data, electrophysiological analyses using pharmacological and genetic manipulations as well as computational modeling of DRG neuron subtypes were undertaken to assess the functions of select voltage-gated potassium channels (Kv1, Kv2, Kv3, and Kv4) in shaping action potential (AP) waveforms and firing patterns. Our findings show that the transcriptome profiles have predictive value for defining ion channel contributions to sensory neuron subtype-specific intrinsic physiological properties. The distinct ensembles of voltage-gated ion channels predicted to underlie the unique intrinsic physiological properties of eight DRG neuron subtypes are presented.
Long Zhao, Raz Ben-Yair, Caroline E Burns, and Geoffrey C Burns. 2019. “Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism.” Cell Rep, 26, 3, Pp. 546-554.e5.Abstract
Previous studies demonstrate that the regenerative zebrafish heart responds to injury by upregulating Notch receptors in the endocardium and epicardium. Moreover, global suppression of Notch activity following injury impairs cardiomyocyte proliferation and induces scarring. However, the lineage-specific requirements for Notch signaling and full array of downstream targets remain unidentified. Here, we demonstrate that inhibition of endocardial Notch signaling following ventricular amputation compromises cardiomyocyte proliferation and stimulates fibrosis. RNA sequencing uncovered reduced levels of two transcripts encoding secreted Wnt antagonists, Wif1 and Notum1b, in Notch-suppressed hearts. Like Notch receptors, wif1 and notum1b are induced following injury in the endocardium and epicardium. Small-molecule-mediated activation of Wnt signaling is sufficient to impair cardiomyocyte proliferation and induce scarring. Last, Wnt pathway suppression partially restored cardiomyocyte proliferation in hearts experiencing endocardial Notch inhibition. Taken together, our data demonstrate that Notch signaling supports cardiomyocyte proliferation by dampening myocardial Wnt activity during zebrafish heart regeneration.
Irfete S Fetahu, Dingailu Ma, Kimberlie Rabidou, Christian Argueta, Michael SMITH, Hang Liu, Feizhen Wu, and Yujiang G Shi. 2019. “Epigenetic signatures of methylated DNA cytosine in Alzheimer's disease.” Sci Adv, 5, 8, Pp. eaaw2880.Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common untreatable form of dementia. Identifying molecular biomarkers that allow early detection remains a key challenge in the diagnosis, treatment, and prognostic evaluation of the disease. Here, we report a novel experimental and analytical model characterizing epigenetic alterations during AD onset and progression. We generated the first integrated base-resolution genome-wide maps of the distribution of 5-methyl-cytosine (5mC), 5-hydroxymethyl-cytosine (5hmC), and 5-formyl/carboxy-cytosine (5fC/caC) in normal and AD neurons. We identified 27 AD region-specific and 39 CpG site-specific epigenetic signatures that were independently validated across our familial and sporadic AD models, and in an independent clinical cohort. Thus, our work establishes a new model and strategy to study the epigenetic alterations underlying AD onset and progression and provides a set of highly reliable AD-specific epigenetic signatures that may have early diagnostic and prognostic implications.
Eleni Anastasiadou, Dina Stroopinsky, Stella Alimperti, Alan L Jiao, Athalia R Pyzer, Claudia Cippitelli, Giuseppina Pepe, Martina Severa, Jacalyn Rosenblatt, Marilena P Etna, Simone Rieger, Bettina Kempkes, Eliana M Coccia, Shannan Ho J Sui, Christopher S Chen, Stefania Uccini, David Avigan, Alberto Faggioni, Pankaj Trivedi, and Frank J Slack. 2019. “Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas.” Leukemia, 33, 1, Pp. 132-147.Abstract
Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein-Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.
Abby L Olsen and Mel B Feany. 2019. “Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo.” Glia, 67, 10, Pp. 1933-1957.Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Wantae Kim, Yong Suk Cho, Xiaohui Wang, Ogyi Park, Xueyan Ma, Hanjun Kim, Wenjian Gan, Eek-Hoon Jho, Boksik Cha, Yun-Ji Jeung, Lei Zhang, Bin Gao, Wenyi Wei, Jin Jiang, Kyung-Sook Chung, and Yingzi Yang. 2019. “Hippo signaling is intrinsically regulated during cell cycle progression by APC/C.” Proc Natl Acad Sci U S A, 116, 19, Pp. 9423-9432.Abstract
The Hippo-YAP/TAZ signaling pathway plays a pivotal role in growth control during development and regeneration and its dysregulation is widely implicated in various cancers. To further understand the cellular and molecular mechanisms underlying Hippo signaling regulation, we have found that activities of core Hippo signaling components, large tumor suppressor (LATS) kinases and YAP/TAZ transcription factors, oscillate during mitotic cell cycle. We further identified that the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase complex, which plays a key role governing eukaryotic cell cycle progression, intrinsically regulates Hippo signaling activities. CDH1 recognizes LATS kinases to promote their degradation and, hence, YAP/TAZ regulation by LATS phosphorylation is under cell cycle control. As a result, YAP/TAZ activities peak in G1 phase. Furthermore, we show in eye and wing development that Cdh1 is required in vivo to regulate the LATS homolog Warts with a conserved mechanism. Cdh1 reduction increased Warts levels, which resulted in reduction of the eye and wing sizes in a Yorkie dependent manner. Therefore, LATS degradation by APC/C represents a previously unappreciated and evolutionarily conserved layer of Hippo signaling regulation.
Alan L Jiao, Roberto Perales, Neil T Umbreit, Jeffrey R Haswell, Mary E Piper, Brian D Adams, David Pellman, Scott Kennedy, and Frank J Slack. 2019. “Human nuclear RNAi-defective 2 (NRDE2) is an essential RNA splicing factor.” RNA, 25, 3, Pp. 352-363.Abstract
The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in (). The function of the human gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of pre-mRNA, and depleting dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of , and highlights the direct regulation of splicing as one of multiple mechanisms through which such phenotypes might be explained.
Melissa L Hancock, Rebecca C Meyer, Meeta Mistry, Radhika S Khetani, Alexandre Wagschal, Taehwan Shin, Shannan J Ho Sui, Anders M Näär, and John G Flanagan. 2019. “Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression.” Cell, 177, 3, Pp. 722-736.e22.Abstract
Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.
Jaclyn Sceneay, Gregory J Goreczny, Kristin Wilson, Sara Morrow, Molly J DeCristo, Jessalyn M Ubellacker, Yuanbo Qin, Tyler Laszewski, Daniel G Stover, Victor Barrera, John N Hutchinson, Rachel A Freedman, Elizabeth A Mittendorf, and Sandra S McAllister. 2019. “Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer.” Cancer Discov, 9, 9, Pp. 1208-1227.Abstract
Immune checkpoint blockade (ICB) therapy, which targets T cell-inhibitory receptors, has revolutionized cancer treatment. Among the breast cancer subtypes, evaluation of ICB has been of greatest interest in triple-negative breast cancer (TNBC) due to its immunogenicity, as evidenced by the presence of tumor-infiltrating lymphocytes and elevated PD-L1 expression relative to other subtypes. TNBC incidence is equally distributed across the age spectrum, affecting 10% to 15% of women in all age groups. Here we report that increased immune dysfunction with age limits ICB efficacy in aged TNBC-bearing mice. The tumor microenvironment in both aged mice and patients with TNBC shows decreased IFN signaling and antigen presentation, suggesting failed innate immune activation with age. Triggering innate immune priming with a STING agonist restored response to ICB in aged mice. Our data implicate age-related immune dysfunction as a mechanism of ICB resistance in mice and suggest potential prognostic utility of assessing IFN-related genes in patients with TNBC receiving ICB therapy. SIGNIFICANCE: These data demonstrate for the first time that age determines the T cell-inflamed phenotype in TNBC and affects response to ICB in mice. Evaluating IFN-related genes from tumor genomic data may aid identification of patients for whom combination therapy including an IFN pathway activator with ICB may be required..
Peiyan Ni, Haneul Noh, Zhicheng Shao, Qian Zhu, Youxin Guan, Joshua J Park, Fatima Arif, James M Park, Chiderah Abani, Cameron Beaudreault, Joy S Park, Elizabeth Berry, Alexander Moghadam, Patric Stanton, John N Hutchinson, Bill Andrews, Clare Faux, John Parnevelas, Leonard M Eisenberg, Kyungjoon Park, Vadim Y Bolshakov, and Sangmi Chung. 2019. “Large-Scale Generation and Characterization of Homogeneous Populations of Migratory Cortical Interneurons from Human Pluripotent Stem Cells.” Mol Ther Methods Clin Dev, 13, Pp. 414-430.Abstract
During development, cortical interneurons (cINs) are generated from the ventral telencephalon, robustly migrate to the dorsal telencephalon, make local synaptic connections, and critically regulate brain circuitry by inhibiting other neurons. Thus, their abnormality is associated with various brain disorders. Human pluripotent stem cell (hPSC)-derived cINs can provide unlimited sources with which to study the pathogenesis mechanism of these disorders as well as provide a platform to develop novel therapeutics. By employing spinner culture, we could obtain a >10-fold higher yield of cIN progenitors compared to conventional culture without affecting their phenotype. Generated cIN spheres can be maintained feeder-free up to 10 months and are optimized for passaging and cryopreservation. In addition, we identified a combination of chemicals that synchronously matures generated progenitors into SOX6KI67 migratory cINs and extensively characterized their maturation in terms of metabolism, migration, arborization, and electrophysiology. When transplanted into mouse brains, chemically matured migratory cINs generated grafts that efficiently disperse and integrate into the host circuitry without uncontrolled growth, making them an optimal cell population for cell therapy. Efficient large-scale generation of homogeneous migratory cINs without the need of feeder cells will play a critical role in the full realization of hPSC-derived cINs for development of novel therapeutics.