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Overview

1. Preprocessing single-cell RNA-seq data 

2. Implementation of single-cell RNA-seq quantification in bcbio 

3. Quality control with particular focus on droplet based methods 

4. Advice for performing differential expression 

5. What is N in single-cell experiments? 
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umis 
umis fastqtransform transform.json r1.fq r2.fq … rn.fq > transformed.fastq

umis cb_filter —bc1 known-barcodes.txt —nedit 1 transformed.fq > filtered.fastq

umis fasttagcount —genemap tx2gene.csv —bc1 known-barcodes.txt … —nedit 1 
alignment.bam counts.csv 

rapmap quasimap -1 filtered.fq -i index > alignment.bam

https://github.com/vals/umis
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Main complications of UMI

1. Across-technology variations in UMI/cellular/sample barcode specifications 

2. Deduplicating UMIs during quantification 

3. Absence of full-length transcript data is not a supported quantification scheme for many 
second generation expression callers
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HMS inDrop ==> klein-v3_R1.fq <==
@NS500233:572:H25VKBGX2:1:11101:16195:1041 1:N:0:1
GCTTTNCATGTTGTTTTGAAGGTTCCCACNGTNANCNTTCTTGTTNACNGNNNNNTTNNNN
+
/AAAA#EEEEEEEEE<EEEEEEEEEEEEE#EE#E#/#EEEEEEEE#EA#/#####EE####
==> klein-v3_R2.fq <==
@NS500233:572:H25VKBGX2:1:11101:16195:1041 2:N:0:1
AGGGGGGG
+
/AA/A///
==> klein-v3_R3.fq <==
@NS500233:572:H25VKBGX2:1:11101:16195:1041 3:N:0:1
ATCGCCGG
+
AAAAAEA/
==> klein-v3_R4.fq <==
@NS500233:572:H25VKBGX2:1:11101:16195:1041 4:N:0:1
ATATNNNNNNNNNN
+
AAAA##########

biological read

cell barcode 1

sample barcode

cell barcode 2

UMI
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10x (v2)
==> test_7_I1.fastq <==
@ST-K00126:314:HFYL2BBXX:7:1101:1631:1226 1:N:0:GTAATTGC
GTAATTGC
+
AAAFFJFJ
==> test_7_R1.fastq <==
@ST-K00126:314:HFYL2BBXX:7:1101:1631:1226 1:N:0:GTAATTGC
GGGCACTAGCTGATAAGGGCCCAACG
+
A-AFFJA-AAJ<FF-F<<F-7FJJJJ
==> test_7_R2.fastq <==
@ST-K00126:314:HFYL2BBXX:7:1101:1631:1226 2:N:0:GTAATTGC
GNTGTGGCAGAGCAGCGACCCGCGGCGGGGCGGCATCCCCAGCTGGTTCGGGCC
GGGACGGGGCGGCCAGCAGGGACGCGCCCCAGGGGGGCAGCTGT
+
A#-<<F7<AJF-FJ<JAAJJFJJ<AF-7AJF77<FJJJFFFJJ<JA-7-777<-F7<<F--7AA7AAAFF-
AF<A-AFFA7J7F--7)-)7--7A<J-

biological read

cell barcode 1

sample barcode

UMI
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Support all barcoding protocols
10x (v2)   
"read1": "(?P<name>@.*) .*\\n(?P<CB>.{16})(?P<MB>.{10})(.*)\\n\\+(.*)\\n(.*)\\n",
"read2": "(@.*) .*\\n(?P<seq>.*)\\n\\+(.*)\\n(?P<qual>.*)\\n",
"read3": "(@.*)\\n(?P<SB>.*)\\n\\+(.*)\\n(.*)\\n"
}

SureCell  
"read1": "(@.*)\\n(.*)(?P<CB1>.{6})TAGCCATCGCATTGC(?P<CB2>.
{6})TACCTCTGAGCTGAA(?P<CB3>.{6})ACG(?P<MB>.{8})GAC(.*)\\n\\+(.*)\\n(.*)\\n",
"read2": "(?P<name>@.*) .*\\n(?P<seq>.*)\\n\\+(.*)\\n(?P<qual>.*)\\n"

CEL-Seq (v2)  
"read1": "(?P<name>@.*) .*UMI:(?P<MB>.{5,6}):.*\\n(?P<seq>.*)\\n\\+\\n(?
P<qual>.*)\\n"

inDrop (v3)  
"read1": "(?P<name>[^\\s]+).*\\n(?P<seq>.*)\\n\\+(.*)\\n(?P<qual>.*)\\n",
"read2": "(.*)\\n(?P<CB1>.*)\\n(.*)\\n(.*)\\n",
"read3": "(.*)\\n(?P<SB>.*)\\n(.*)\\n(.*)\\n",
"read4": "(.*)\\n(?P<CB2>.{8})(?P<MB>.{6})(.*)\\n(.*)\\n(.*)\\n"
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whitelisted cellular barcodes
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umis 
umis fastqtransform transform.json r1.fq r2.fq … rn.fq > transformed.fastq

umis cb_filter —bc1 known-barcodes.txt —nedit 1 transformed.fq > filtered.fastq

umis fasttagcount —genemap tx2gene.csv —bc1 known-barcodes.txt … —nedit 1 
alignment.bam counts.csv 

rapmap quasimap -1 filtered.fq -i index > alignment.bam

https://github.com/vals/umis
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quantification uncertainty

Ntranos et al. Genome Biology  (2016) 17:112 Page 2 of 14

Fig. 1 Equivalence class and transcript-compatibility counts. This figure gives an example of how reads are collapsed into equivalence classes. Each
read is mapped to one or more transcripts in the reference transcriptome; these are transcripts that the read is compatible with, i.e., the transcripts
that the read could possibly have come from. For example, read 1 is compatible with transcripts t1 and t3, read 2 is compatible with transcripts t1
and t2, and so on. An equivalence class is a group of reads that is compatible with the same set of transcripts. For example, reads 4,5,6,7,8 are all
compatible with t1, t2, and t3, and they form an equivalence class. Since the reads in an equivalence class are all compatible with the same set of
transcripts, we simply represent an equivalence class by that set of transcripts. For example, the equivalence class consisting of reads 4,5,6,7,8 is
represented by {t1, t2, t3}. Aggregating the number of reads in each equivalence class yields the corresponding transcript-compatibility counts. Note
that in order to estimate the transcript abundances from the transcript-compatibility counts, a read-generation model is needed to resolve the
multi-mapped reads

Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts, 
Genome Biology, 2016
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transcript compatibility counts

Ntranos et al. Genome Biology  (2016) 17:112 Page 2 of 14

Fig. 1 Equivalence class and transcript-compatibility counts. This figure gives an example of how reads are collapsed into equivalence classes. Each
read is mapped to one or more transcripts in the reference transcriptome; these are transcripts that the read is compatible with, i.e., the transcripts
that the read could possibly have come from. For example, read 1 is compatible with transcripts t1 and t3, read 2 is compatible with transcripts t1
and t2, and so on. An equivalence class is a group of reads that is compatible with the same set of transcripts. For example, reads 4,5,6,7,8 are all
compatible with t1, t2, and t3, and they form an equivalence class. Since the reads in an equivalence class are all compatible with the same set of
transcripts, we simply represent an equivalence class by that set of transcripts. For example, the equivalence class consisting of reads 4,5,6,7,8 is
represented by {t1, t2, t3}. Aggregating the number of reads in each equivalence class yields the corresponding transcript-compatibility counts. Note
that in order to estimate the transcript abundances from the transcript-compatibility counts, a read-generation model is needed to resolve the
multi-mapped reads
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quality control
• focus on getting high quality data, messy data is EXTREMELY hard to work with 

• cells must be alive, before running the experiment shoot for viability > 95% 

• when filtering, it is better to start out too strict than too lax 

• essential to work closely with the biologists, many, many judgement calls need to be made 
based on expert knowledge 

• before beginning analysis, have a good list of marker genes in hand for each cell type that 
could be present in the sample 

• often markers used for FACS sorting are not good for single-cell RNA-seq 
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cellular barcode histogram 
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zebrafish PMBC cells
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free-floating RNA contamination
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total transcript counts per cell
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genes detected per cell
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total counts vs genes detected
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high mitochondria indicates dying cells
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low complexity cells
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filtering and correction

remove cells with high mitochondrial RNA 

remove cells with abnormally low genes detected 

correct mitochondrial RNA percentage 

correct genes detected 

filter low complexity
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Differential expression: dropouts
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Zero inflated models from ecology

counting tigers and elephants 

if an elephant exists in a quadrant, it will be seen and counted 

if no elephants are seen in a quadrant there are no elephants in the quadrant 

if a tiger exists in a quadrant, it may or may not be seen since they blend in 

if no tigers are seen in a quadrant there may be tigers in the quadrant, but are missed 

account for that with a zero-inflated model 
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single-cell RNA-seq zero inflated models

many bulk RNA-seq differential expression callers model the expression of a gene by the 
negative binomial distirbution 

there is a zero inflrated version of the negative binomial 

R package zinbwave implements this for single-cell RNA-seq 

Another type of zero inflated model is a hurdle model 

combine two models, a negative binomial model and a hurdle component of the model that 
accounts for the zero inflation. SCDE is an example of a package that uses this
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Differential expression: ignore all that
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ANALYSIS

have important implications in practical applications. In agree-
ment with previous evaluations, methods developed for bulk 
RNA-seq analysis did not perform worse than those specifically 
developed for scRNA-seq data, but sometimes showed a stronger 
dependence on data prefiltering.

Figure 5  summarizes performance across the main evaluation 
criteria in our study. For each evaluation aspect, each method 
was classified as ‘good’, ‘intermediate’ or ‘poor’ (Online Methods). 
Although it is difficult to capture the full complexity of the evalu-
ation in a crude categorization, the table provides a convenient 
summary of our results and can be used to select an appropri-
ate method based on the criteria that are most important for a 
specific application.

The number of cells per group ranged between 6 and 400 in 
our data sets. Although these are relatively small numbers com-
pared with the thousands of cells that can be sequenced in an 
actual experiment, DE analysis is typically used to compare sets 
of homogeneous cells (for example, from given, well-defined cell 
types), and these collections are likely to be much smaller. Thus, 
we believe that the range of sample sizes considered in our com-
parisons are relevant for real applications and that it is important 
to know how the methods perform under these circumstances.

METHODS
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5 | Summary of DE method performance across all major evaluation 
criteria. Criteria and cutoff values for performance categories are available 
in the Online Methods. Methods are ranked by their average performance 
across the criteria, with the numerical encoding good = 2, intermediate = 1,  
poor = 0. NODES and SAMseq do not return nominal P values and were 
therefore not evaluated in terms of the FPR.
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What is N in cell-culture experiments?

Stanley Lazic: What is ’N’ in cell culture and animal experiments? PLoS Biol. 2018 Apr; 16(4): e2005282.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902037/#
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What is N in single cell experiments?

• Three treated patients, three control patients. 

• Extract PBMC and want to look at the effect of the treatment on B cells. 

• Indentified B-cell clusters in the treated and non-treated patients via marker genes and found 
300 B cells in each patients for a total of 900 B cells in each treatment condition 

• If I want to ask what the effect of the treatment is on B-cells, what is my N here? Is it 900 for 
each condition? No. But almost all single-cell papers to date (including mine!) treat it as if it is. 

• N should be 3, not 900.
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How to get to N=3?

• pseudobulk: sum all B-cells for each sample, and treat it like an in-silico FACS sorted 
experiment 

• multilevel model: model the patient level data in a multilevel model so you can account for the 
non-independence of measurements from B-cells of the same patient
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pseudobulk is simple and works well

http://www.nxn.se/valent/2019/2/15/handling-confounded-samples-for-differential-
expression-in-scrna-seq-experiments (Valentine Svensson, via our twitter discussion)

http://www.nxn.se/valent/2019/2/15/handling-confounded-samples-for-differential-expression-in-scrna-seq-experiments
http://www.nxn.se/valent/2019/2/15/handling-confounded-samples-for-differential-expression-in-scrna-seq-experiments
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Things to work on together
• bcbio is community developed, and improvements from the community is how we get better 

• if you are getting started with single cell, it would be awesome for someone to give Alevin a 
whirl on 10x data and report back if it works compared to Cellranger for example 

• I’m super interested in adding arbitrary support for single-cell protocols to Alevin, which we 
could work with Rob’s group to do 

• We’ve added support for single-cell DNA seq, would be good to have more folks working on 
improving variant calling for that 

• explore multilevel modeling using negative binomial distribution instead of poisson


