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Why would immuno-oncologists care about cell composition?

e Thereapeutic decisions require knowledge of complex tumor

microenvironment
o Cell types and proportions?

Growth factors
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Approaches

e Cell sorting
o FACS
o CyTOF
e |HC/IF
o Cell staining
e Bulk Transcriptomics
o Microarrays
o RNA-seq
e Single cell RNA-seq
o Transcriptomics of single cells
e Combinations?
o Spatial transcriptomics?



Approaches - Cell sorting

- Sort and label cells using cell type specific antigens

- Detect labels on cells
- CyTOF - time-of-flight mass spectrometry
- FACS - fluorescent activation cell sorting

Pros @
>
- Known technology, established infrastructure O
- Comparatively cheap (non CyTOF) /.
. stained cells
Cons @0
- Limited markers (max 50 for CyTOF) ©

- CyTOF antibodies are expensive
- Potential disaggregation issues



Approaches - IHC/IF

Sectioning and staining for cell type specific
markers

Pros

- Known technology, established infrastructure
- Comparatively cheap
- Lots of FFPE and frozen tissue samples available

Cons

- Sections only, hard/expensive to assay entire
tumor
- Limited to a few markers per section




Approaches - Single Cell RNA-seq

10X, InDrops, DropSeq, SmartSeq

Epithelial cells
B Myoepithelial
B Luminal-HS

B Luminal-AV

" Luminal-HS-AV

Stromal cells
" Fibroblast
I Vascular endothelial
B Pericyte
I Lymphatic endothelial
B Macrophage
* Dendritic cell
Natural killer cell

BT cel

Pros

- Powerful
- Effective

Cons

- Expensive -

- Disaggregation bias

- Can’t always identify the cells - - - -
- Marker issues —

Li, C. M.-C. et al. Aging-associated alterations in the mammary gland revealed by single-cell RNA
sequencing. bioRxiv 773408 (2019). doi:10.1101/773408



Approaches - Bulk RNA-seq

Bulk RNA-seq = all cells within mixture contribute to final expression levels

. Analyzing single cells is like
Pros . %l:tkliiimﬂlt‘tai :”2'3&'3 Issala r tasting each individual piece of
® (an assay entire sample at once e e fruit to gain a much more
® Can help identify transcription average of all ingredients. huanced understanding of the

.. .. composition of the fruit salad
changes in individual cell types

® Huge amount of data out there

already * =2 &=
® Cheap(er) g

Cons .
® Hard to do well ~ i
$200/sample (Novogene)  $4000-10000/sample

Can we computationally figure out what went into the mixture?



Approaches — Two main types

1. Deconvolution

1. Partial or full

2. Marker based measurements



Methods — Some popular approaches

One review listed 64 approaches!

Table 1. Overview of cell type quantification methods providing gene signatures for immuno-oncology

Tool Abbrev. Type Score Comparisons Algorithm Cell types Reference
CIBERSORT CBS D Immune cell fractions, rela-  Intra v-support vector 22 immune cell types  Newman ez al. (2015)
tive to total immune cell regression
content
CIBERSORT CBA D Score of arbitrary units that  Intra, inter V-support vector 22 immune cell types  Newman
abs. mode reflects the absolute pro- regression etal. (2015, 2018)
portion of each cell type
EPIC EPC D Cell fractions, relative to all ~ Intra, inter  constrained least 6 immune cell types,  Racle et al. (2017)
cells in sample square regression fibroblasts, endo-
thelial cells
MCP-counter MCP M Arbitrary units, comparable  Inter mean of marker gene 8 immune cell types,  Becht et al. (2016)
between samples expression fibroblasts, endo-
thelial cells
quanTlseq QTS D Cell fractions, relative toall ~ Intra, inter ~ constrained least 10 immune cell types ~ Finotello ez al. (2017)
cells in sample square regression
TIMER TMR D Arbitrary units, comparable  Inter linear least square 6 immune cell types Lietal (2016)
between samples (not dif- regression
ferent cancer types)
xCell XCL M Arbitrary units, comparable  Inter ssGSEA (Hinzelmann 64 immune and non-  Aran et al. (2017)

between samples

etal.,2013)

immune cell types




Deconvolution methods — unmixing the smoothie

How many strawberries, kiwis, pineapples and oranges went into the salad?




Deconvolution methods

Complicated math

“a system of equations that
describe the expression of each
gene in a heterogeneous
sample as a linear combination
of the expression levels of that
gene across the different cell
subsets present in the sample,
weighted by their relative cell
fractions”

(Finotello, F. & Trajanoski, Z. Quantifying tumor-
infiltrating immune cells from transcriptomics data.
Cancer Immunol. Immunother. 67, 1031-1040 (2018).

genes

gene expression measurment
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Successful deconvolution in a related technology

Changes in DNA methylation in PBMCs during aging driven entirely by changes in cell composition
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Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31 (2014).



Deconvolutions don’t always work well

* simulated data
sets drawn
from scRNA-
seq data

(a)

estimated fraction
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Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.

Bioinformatics 35, i436—-i445 (2019).
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Issues - Technological biases

Kidney: Array intensities vs sequencing counts Liver: Array intensities vs sequencing counts
® Some of the methods rely on microarray cS -
based cell type references
® Microarrays = probe intensities 8 -8
o continuous measure, best modeled by 5 5
normal distribution after log transformation %Ei ° %Ei 7
> &
<. < oo
® RNA-seq—read counts
o count based measure, best modeled by i
negative binomial distribution of raw counts ] I ] ] ] I ] l
0 5 10 15 0 5 10 15
lllumina (log2) counts lllumina (log2) counts

® Can transform RNA-seq data to better fit
microarray (normal) distributions but count John C. Marioni et al. Genome Res. 2008;18:1509-1517
based methods would be better



Issues — “spillover”

Closely related cell types have
similar cell signatures

scores that predict enrichment of
one cell type may also predict
enrichment of another cell type

o other cell type might not even be
present

= c/Mono
CAF  INK
CBA' , MCP IMR Cancer [l T CD4+
015 0. BBr = Moc T CD8+
Endo

Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification
methods for immuno-oncology. Bioinformatics 35, i436—-i445 (2019).



Issues — Effects of unknown cell types

There are known knowns. These are things we know that we know. There are known
unknowns. That is to say, there are things that we know we don’t know. But there are
also unknown unknowns. There are things we don’t know we don’t know.

- Donald Rumsfeld

* you can’t measure something you don’t know is there

* “spillover” from unidentified cell types with can shift measures for your known cell
types



Issues — Microenvironment effects

e Reference sets are often derived from purified non-tumor cells

e Do pure cell populations accurately reflect the gene expression patterns
of cells in a tumor?

e Cell state versus cell identities - microenvironment affects cell state



Issues - Cell size biases

e Cells are not all the same size

e Methods may assume that each
cell contributes an equal amount

of RNA to total pool

e BUT bigger cells can have more
RNA



Issues — limited reference sets

e Uneven background dataset availability

o Not all cell types available for all methods
o Not all species available

Table 1. Overview of cell type quantification methods providing gene signatures for immuno-oncology

Tool Abbrev.

Type Score

Comparisons Algorithm

Cell types

Reference

CIBERSORT  CBS

CIBERSORT CBA
abs. mode

EPIC EPC

MCP-counter MCP

quanTlseq QTS

TIMER TMR

xCell XCL

D

D

M

M

Immune cell fractions, rela-
tive to total immune cell
content

Score of arbitrary units that
reflects the absolute pro-
portion of each cell type

Cell fractions, relative to all
cells in sample

Arbitrary units, comparable
between samples

Cell fractions, relative to all
cells in sample

Arbitrary units, comparable
between samples (not dif-
ferent cancer types)

Arbitrary units, comparable
between samples

Intra v-support vector

regression
Intra, inter v-support vector
regression
Intra, inter constrained least
square regression

mean ()f lll:ll'kel’ gene
expression

Inter

Intra, inter  constrained least

square regression

Inter linear least square
regression
Inter ssGSEA (Hanzelmann

etal.,2013)

22 immune cell types

22 immune cell types

6 immune cell types,
fibroblasts, endo-
thelial cells

8 immune cell types,
fibroblasts, endo-
thelial cells

10 immune cell types

6 immune cell types

64 immune and non-

\ immune cell types /

Newman et al. (2015)

Newman

etal. (2015,2018)

Racle et al. (2017)

Becht et al. (2016)

Finotello et al. (2017)

Lietal (2016)

Aran et al. (2017)




Issues — practical problems
Method may :

e Require raw data availability
e Need all samples be run at same time
e Not have good or accessible software

CIBERSORT, XCell, TIMER = webtools limit bulk use

EPIC = R package and webtool available

quanTlseq = Bash command line package (available as Docker image)
Immundeconv = R package containing all major methods

O O O O



Marker base methods — Keeping it simple

Which has the most strawberries?




Marker based methods

; Fdes L,
® Using lists of genes that are characteristic for a cell type ERERE i 3 i ]
. o . = :
o Derived from targeted transcriptomics or literature studies = .
: L e = |i§
® Semi-quantitiative =
=
o Can compare between samples but not between cell types -.
=
— =

Kassambara, A. et al. GenomicScape: an easy-to-use web tool for
gene expression data analysis. Application to investigate the
molecular events in the differentiation of B cells into plasma
cells. PLoS Comput. Biol. 11, e1004077 (2015).



Marker methods

e Can use simple “robust” summaries
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Marker methods

A Pgenotype B ‘Leading edge cgubset ‘s
I PR, ene se
e Can use more robust GSEA AB ||
I Geneset S —y

methods

—| Correlation with Phenotype
L*

Random Walk

o Gene Set Enrichment Analysis

o Rank based

Maximum deviation ~Gene List Rank
from zero provides the
enrichment score ES(S)

b High ». Low
~ ES



Marker methods —an example

We had mouse data which precluded
most published methods

Had to get creative!

Used the Nanostring Mouse PanCancer
Immune Profiling Panel genes as cell type
markers

Used the geometric mean expression of
the marker sets in each sample

Were able to compare immune signatures
across samples (but not across cell types)
GOOD ENOUGH

3 Age
1 Treatment

. Age
' H:“r
8 cell 2 eu
1 Treaime

NK cell

Thi cell 0 E,f{ .
CDB* T cell 1 [ 1eotype

I helper call
T ce
Cytotoxic cell
Tgd cell

DC

Mast call
pDC

abC

NK CD56%" cell
Macrophage
Neutophil
n2 cell
Ecsinophil
Tth

3

iDC
NK CD56™9" cell

hi7 cell

Sceneay, J. et al. Interferon Signaling is Diminished with Age and is Associated with Immune Checkpoint Blockade

Efficacy in Triple-Negative Breast Cancer. Cancer Discov. CD-18 (2019).

1
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Marker methods —a 2nd example

® Wanted to look at levels of pro-metastatic immunsuppressive neutrophils in two different biological conditions

® Had mouse RNA-seq data
® o reference data for the cell types

Couldn’t do any of the populat deconvolutions methods!

What did we have to work with?
® Differential expression of KEP cells compared to controls from Coffelt 2015
(Coffelt, S. B. et al. IL-17-producing \gamma\delta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345-348 (2015).)

1. Genes upregulated in KEP cells (pro-metastatic immunosuppressive neutrophil markers- Signature 1)
2. Genes downregulated in KEP cells (control neutrophil markers - Signature 2)
® Samples with more pro-metastatic immunosuppressive neutrophils should have HIGHER expression of genes upregulated in

KEP cells (Signature 1) and LOWER expression of genes downregulated in KEP cells (Signature 2)
®  So aratio of Signaturel:Signature2 will be higher in samples with more pro-metastatic immunosuppressive neutrophils



Marker methods —a 2nd example

® Ratio of genes expressed by pro-metastatic

immunosuppressive neutrophils from f 3
K14cre;Cdh1F/F;Trp53F/F (KEP) mice to control Coffelt Signature
neutrophils from wild type littermates -
(KEP:Normal) g 30
Blue — control lungs B 25
Red — lungs from primary tumour-bearing animals Z :
o
® Higher ratios indicate higher pro-metastatic § 2.0
KEP signatures. o
= 1.5
v
1.0 Met1 PBS

Primary Control



Take home messages

e Carefully consider your options and what you need from the experiment
o Tradeoffs with any method
o Is your data appropriate for the method?

o Avoid deconvolution if you can

m  While not perfect, marker based methods are simple and less prone to assumptions

e Validate, validate, validate



Future

e Addressing spillover, technological biases and limited reference sets

o Better references and marker sets — single cell RNA-Seq

® Microenvironment and unknown cell types issues

o Single cell RNAseq analysis of exemplar samples

“...we believe that the improvements made to signature matrices outweigh potential
algorithmic improvements”

Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
Bioinformatics 35, i436—-i445 (2019).



Recent publications that used single cell to improve deconvolution

1. Schelker, M. et al. Estimation of immune cell content in tumour tissue using single-
cell RNA-seq data. Nat. Commun. 8, 2032 (2017).

2. Wang, X, Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk Tissue Cell Type
Deconvolution with Multi-Subject Single-Cell Expression Reference. bioRxiv 354944
(2018). d0i:10.1101/354944

3. Newman, A. M. et al. Determining cell type abundance and expression from bulk
tissues with digital cytometry. Nat. Biotechnol. 37, 773—-782 (2019).

4. Menden, K., Marouf, M., Dalmia, A., Heutink, P. & Bonn, S. Deep-learning-based cell
composition analysis from tissue expression profiles. bioRxiv 659227 (2019).
doi:10.1101/659227



Future

Tumor Deconvolution DREAM Challenge

https://www.synapse.org/#!Synapse:syn15589870/wiki/582446

The goal of this Challenge is to evaluate the ability of computational
methods to deconvolve bulk expression data, reflecting a mixture of cell
types, into individual immune components.

Methods will be assessed based on in vitro and in silico admixtures
specifically generated for this Challenge.


https://www.synapse.org/
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Methods — “bakeoff”

Datasets

integrated scRNA-seq dataset of more
than 11 000 single cancer, stromal and
immune cells from 23 melanoma and

ovarian cancer patients
* simulate bulk RNAseq and validate

results

* individually retrieved and aggregated
500 random immune- and non-immune

cells

three independent datasets that have

Methods

Table 1. Overview of cell type quantification methods providing gene signatures for immuno-oncology

Tool Abbrev. Type Score

Comparisons Algorithm

Cell types

Reference

CIBERSORT CBS D

CIBERSORT CBA D

abs. mode

EPIC EPC D

MCP-counter MCP M

quanTIseq QTS D

TIMER TMR D

Immune cell fractions, rela-
tive to total immune cell
content

Score of arbitrary units that
reflects the absolute pro-
portion of each cell type

Cell fractions, relative to all
cells in sample

Arbitrary units, comparable
between samples

Cell fractions, relative to all
cells in sample
Arbitrary units, comparable

Intra

Intra, inter

Intra, inter

Inter

Intra, inter

Inter

v-support vector
regression

v-support vector
regression

constrained least

square regression

mean of marker gene
expression

constrained least
square regression
linear least square

22 immune cell types

22 immune cell types

6 immune cell types,
fibroblasts, endo-
thelial cells

8 immune cell types,
fibroblasts, endo-
thelial cells

10 immune cell types

6 immune cell types

Newman et al. (2015)

Newman

etal. (2015, 2018)

Racle et al. (2017)

Becht et al. (2016)

Finotello et al. (2017)

Lietal (2016)

between samples (not dif- regression
. . ferent cancer types)
bee n p rofl Ied Wlth FACS xCell XCL M Arbitrary units, comparable  Inter ssGSEA (Hinzelmann 64 immune and non-  Aran ez al. (2017)
between samples etal., 2013) immune cell types

* PBMCGCs

e Qvarian cancer
e Melanoma



Comparing methods - correlations

* simulated data
sets drawn
from scRNA-
seq data

(a)

estimated fraction

B DC Mac/Mono NK T CD4+ T CD8+ T CD4+n.r. T reg CAF
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Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.

Bioinformatics 35, i436—-i445 (2019).
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Comparing methods — correlations

Real data
Hoek = PBMCs

Racle = Melanoma
Schelker = Ovarian

(b)

estimated fraction
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Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
Bioinformatics 35, i436-i445 (2019).




Comparing methods — detection limits

* simulated bulk RNA-seq samples
with an increasing amount of the
cell type of interest (x-axis)

*  background of 1000 cells randomly
sampled from the other cell types

Figure explanation

* dots = the mean predicted score
across five independently simulated
samples for each fraction of spike-in
cells

* red line = minimal detection fraction,
i.e. the minimal fraction needed for a
method to detect its abundance as
different from background

* blue line = background prediction
level, i.e. average estimate of a
method while the cell type is absent

0.3 4

0.0 4

0.3 1
0.0 A

0.3 4

0.0 4

300 A

average estimate

0.0

0.7 4
0.0

0.3 1

0.4 1

performance measure — background prediction fraction — minimal detection fraction

B DC Mac/Mono NK T CD4+ TCD8+ T CD4+n.r. T reg CAF
. T marete
- :.-.-". amatent o’ M"-"
L S | | —— * | opamtne et I~
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gussten

0.0 4

zero

Endo

Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
Bioinformatics 35, i436-i445 (2019).
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Comparing methods — spillover

simulated bulk RNA-seq samples
containing only cells of one of the nine
immune and non-immune cell types

Figure Explanation

outer circle indicates different samples
interior connections refer to method
predictions

size of a border segment reflects the
predicted score for that cell type (
connection leading to border segment
of same color indicates a correctly
predicted cell type fraction

connection leading to a different color
indicates spillover

cell type
[ I3 ™ Mac/Mono
BcaF ENK
Cancer [l T CD4+
| les T CD8+
[ Endo

Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
Bioinformatics 35, i436-i445 (2019).



Comparing methods — spillover improvements

: (a) QTS (b) CBS EPC QTS
* Splllover can be 0.204 p=0.0096 p=0.91 p=5.9e-10 p=22e-12
improved with more '
specific signatures © 045 061 .
S |- 0
UJ [ 8
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Comparing methods — recommendations

IH

No “one-size-fits-all” method
General purpose deconvolution
* EPIC and quanTlseq
absolute levels not needed (inferring
changes between treatment and control
groups)
*  MCP-counter
* low spillover
presence/absence of a cell type
* xCell
* best results when cells
actually absent

Table 2. Guidelines for method selection

Cell type Recommended methods Overall performance Absolute score No background predictions
B cell EPIC + ++ +
MCP-counter ++ — —
T cell CD4+ EPIC + Tt _
xCell ++ - 4+
T cell CD4+ non-regulatory quanTIseq + ++ +
xCell + - +
T cell regulatory quanTIseq ++ 44 _
xCell ++ - S+
T cell CD8+ quanTIseq ++ ++
EPIC ++ ++ _
MCP-counter ++ — _
xCell + - ++
Natural Killer Cell EPIC ++ ++ +
MCP-counter ++ — —
Macrophage / Monocyte xCell - ++
EPIC + ++ +
MCP-counter ++ — —
Cancer-associated fibroblast EPIC ++ ++ +
MCP-counter ++ — —
Endothelial Cell EPIC ++ ++ +
xCell ++ — 44

Dentricic cell

None of the methods can be recommended to estimate overall DC content. MCP-counter and quanTIseq can

be used to profile mDCs.
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Combination methods — Using single cell data

Worked witih single cell
samples from multiple
sites:

1. PBMCs

2. Ascites

3. Melanoma

and multiple patients
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REGP1 - PBMC only derived signatures (equivalent to current signatures)

REGP2 - Consensus signatures from all single cell samples (PBMCs plus melanoma and ascites)
REGP3 - Indication specific signatures from single cell

REGP4 - Patient malignant, consensus non-malignant signatures

REGP5 - Patient specific all cell types signatures

Schelker, M. et al. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat. Commun. 8, 2032 (2017).



